Intraocular pressure responses to the adenosine agonist cyclohexyladenosine: evidence for a dual mechanism of action.

نویسنده

  • C E Crosson
چکیده

PURPOSE Previous studies have shown that adenosine agonists are effective in reducing intraocular pressure (IOP). However, the mechanism(s) responsible for this ocular hypotensive effect has not been established. This study evaluates the relative contribution of changes in aqueous flow and outflow facility associated with the ocular hypotensive response to the adenosine agonist cyclohexyladenosine (CHA). METHODS New Zealand White rabbits were treated topically in one eye with the adenosine A(1) agonist CHA. Changes in IOP, aqueous flow, and total outflow facility at various times after CHA administration were then determined. RESULTS These studies demonstrated that CHA produces a dose-related reduction in IOP. Analysis of the dose-response curve revealed an ED(50) and a Hill coefficient of 87 microg and 1.9, respectively. Aqueous flow measurements demonstrated that 1.5 hours after CHA administration, aqueous flow was reduced by 35%. However, by 3.5 hours postdrug, no significant change in aqueous flow was observed. Measurement of the outflow facility found no significant change in facility 1.5 hours after CHA administration. However, by 3.5 hours after CHA administration, outflow facility was significantly increased by 85%. CONCLUSIONS These data demonstrate that the adenosine agonist CHA lowers IOP in a dose-related fashion. This hypotensive action results from an early reduction in aqueous flow followed by a subsequent increase in outflow facility. This dual mechanism of action is consistent with analysis of CHA dose-response curve, which indicates that the reduction in IOP induced this agonist's results from multiple mechanisms of action.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modulation of conventional outflow facility by the adenosine A1 agonist N6-cyclohexyladenosine.

PURPOSE Studies have shown that the activation of adenosine A(1) receptors lower intraocular pressure primarily by increasing total outflow facility. The purpose of this study was to investigate the actions of the adenosine A(1) agonist N(6)-cyclohexyladenosine (CHA) on conventional outflow facility. METHODS Conventional outflow facility was evaluated in isolated bovine anterior segments, per...

متن کامل

The effect of intraperitoneal injection of N6-cyclohexyladenosine, a selective adenosine A1 receptor agonist, on entorhinal cortex-kindled seizures in rats

The effects of intraperitoneal injection of N6-cyclohexyladenosine (CHA, a selective adenosine A1 receptor agonist) and 8-cyclopenthyle-I-3-dimethylexanthine (CPT, a selective adenosine A1 receptor antagonist) on entorhinal cortex-kindled seizures were investigated. Fully entorhinal cortex-kindled rats received normal saline (control), CHA (0.06, 0.12 and 0.25 mg/kg) or CPT (0.06 and 0.12 mg/kg...

متن کامل

Anticonvulsant effects of intrahippocacampal N6-cyclohexyladenosine on piriform cortex-kindled seizures

In this study the role of adenosine A1 receptors of the CA1 region of hippocampus on piriform cortex–kindled seizures was investigated in rats. Obtained results showed that in kindled animals, bilateral microinjection of N6–cyclohexyladenosine (CHA), an adenosine A1 receptor agonist, at doses of 10 and 100 mM into the hippocampal CA1 region decreased the afterdischarge duration (ADD), stage 5 s...

متن کامل

Anticonvulsant effects of intrahippocacampal N6-cyclohexyladenosine on piriform cortex-kindled seizures

In this study the role of adenosine A1 receptors of the CA1 region of hippocampus on piriform cortex–kindled seizures was investigated in rats. Obtained results showed that in kindled animals, bilateral microinjection of N6–cyclohexyladenosine (CHA), an adenosine A1 receptor agonist, at doses of 10 and 100 mM into the hippocampal CA1 region decreased the afterdischarge duration (ADD), stage 5 s...

متن کامل

CEREBRAL BLOOD FLOW REGULATION IN ANESTHETIZED MORPHINE DEPENDENT RATS: THE ROLE OF THE ADENOSINE SYSTEM

Adenosine has many of the characteristics of a regulator of cerebral blood flow and adenosine receptors change in morphine dependency. In this study the changes in adenosine receptors' responsiveness of pial vessels in the hind limb area of the sensory cortex were evaluated in morphine dependent rats (MDR) using the laser Doppler flowmetry technique. Adult male Sprague Dawley rats (250-350 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Investigative ophthalmology & visual science

دوره 42 8  شماره 

صفحات  -

تاریخ انتشار 2001